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The imperfect mixing of reactants in a continuously fed stirred tank reactor generates inhomogeneous
perturbations that are responsible for stirring and mixing effects. Using a cellular mixing model and a kinetic
model of the Belousov-Zhabotinsky reaction, we studied the statistical properties and dynamical consequences
of the reactor inhomogeneities during limit cycle oscillations. Our key resultsthe time-dependent probability
distributionsdepends dramatically on oscillation phase: it is sharply peaked during the slow phase and broadens
during the rapid phase of oscillation, where reaction is fast compared to mixing, and inhomogeneities and
fluctuations are prominent. Observables are obtained from the probability distribution by appropriate averaging.
We studied the stirring dependence of fluctuations and of the average oscillation amplitude and period, as
well as the variance of these oscillation attributes.

A. Introduction

Inhomogeneity may drastically affect the rates and dynamics
of imperfectly mixed, nonlinear chemical reactions,1,2 in par-
ticular those with chemical instabilities.3,4 In these reactions,
inhomogeneous kinetics is manifest through so-called stirring
effects: the dependence on stirring rate of steady state concen-
trations,1,5,6 of oscillation attributes,7-11 and of bifurcation
points.5,6,8,10,12

Fluid mixing proceeds by a stretching and folding process
that gives rise to laminar structures with a wide distribution of
length scales.13-15 While their detailed description has grown
into an extensive literature in fluid dynamics and chemical and
mechanical engineering, it is striking that this needs yet to be
accompanied by similar studies incorporating chemical reac-
tions.15 A different emphasis is placed in modeling studies of
chemical instabilities16-19 where inhomogeneity is considered
in a minimal, average way while reaction is treated in greater
detail. While these approaches reproduce certain average
aspects of the reactor response, much remains to be learned
about the nature and role of the underlying inhomogeneities
and the resulting fluctuations. In experiments, the statistical
nature of the inhomogeneities shows up through concentration
fluctuations5,9,20and through irregular oscillation attributes such
as amplitudes and periods.7,8,11 In oscillating systems one often
finds that the fluctuation amplitude is a sensitive function of
oscillation phase,8,9 reflecting a periodic variation of the system’s
response to external perturbations.
The objectives of this paper are to explore the statistical

properties of the reactor inhomogeneities by adapting a cellular
mixing (CM) model of the CSTR21and to use the insights gained
for interpreting qualitatively the dynamical consequences and
stirring effects. A more quantitative application of the method
to bistable systems will be reported elsewhere.46 We employ a
flow-Oregonator model of the Belousov-Zhabotinsky reaction
and restrict ourselves to its oscillating regime. The CM model
considers the CSTR as a collection of cells which are supplied,
removed, and mixed by appropriate feeding and mixing
protocols while each cell evolves like a homogeneous batch
reactor. The state of the reactor is given by the concentration

vector of chemical species in every cell. From this, one readily
constructs the time-dependent, multivariate probability distribu-
tion, the key result of this work. The probability distribution
is a more informative platform than its average for understanding
the CSTR dynamics and its stirring dependence. Macroscopic
observables are obtained by appropriate averaging over the
probability distribution. Specifically we address the relations
between the probability distribution and the experimentally
observable fluctuations, the irregularities of oscillation amplitude
and period, and the dependence of these average oscillation
attributes on mixing.

We find that the calculated probability distribution depends
dramatically on oscillation phase. The broadening of the
probability distribution that occurs during the phase of rapid
autocatalytic explosion and the pronounced concentration
fluctuations that have been observed in experiments with
localized detection9,10,20 appear to be one and the same
phenomenon. Given that the primary, mixing-induced perturba-
tions arise independently of phase, the phase-dependent response
of the system must reflect an intrinsic, local tendency of the
limit cycle to process imposed perturbations. The rate with
which perturbations from a limit cycle decay or grow is
generally a sensitive function of phase,23,24and globally stable
limit cycles generally possess sensitive phases during which
perturbations are amplified before they decay ultimately.
Indeed, this tendency toward local instability is the source of
chaotic dynamics in three dimensions, but it persists in two
dimensions where topological constraints confine the system
to limit cycles. Furthermore, the asymptotically contracting flow
in phase space that characterizes dissipative dynamical systems
does not always occur monotonically, and globally stable limit
cycles may possess phases where phase volumes expand
locally.24 Our results show that the broadening of the probability
distribution and the resulting growth of fluctuations are closely
related to the local instability of the limit cycle, measured by
the divergence div f of the flow (1).

The probabilistic description of reactive systems is usually
given by stochastic differential equations. Indeed, CM models
may be recast in terms of stochastic differential equations21,25-27

that provide equivalent results. Stationary solutions of the
Fokker-Planck equation for the Bonhoeffer-van der Pol

* Corresponding author.
X Abstract published inAdVance ACS Abstracts,February 15, 1997.

2304 J. Phys. Chem. A1997,101,2304-2309

S1089-5639(96)02451-6 CCC: $14.00 © 1997 American Chemical Society



model28,29 are in qualitative accord with the explicitly phase-
dependent solutions reported here.
The Monte-Carlo version of Curl’s cellular mixing model2

was first described by Spielman and Levenspiel.30 It is applied
here to a CSTR with two separate, nonpremixed feedstreams
and a two-variable kinetic system. The model assumes that the
CSTR consists ofN identical fluid parcels or cells labeledi,
where each behaves as a homogeneous batch reactor. For the
ith cell, the rate of change of the concentrations ci ) (c1

i , c2
i ) is

given by

The algorithm consists of the following steps: (1) The reactor
is fed at intervalsτf by replacing a pair of randomly chosen
cells with two new cells with feedstream concentrations (c°1,
0), (0, c°2). The feeding intervalτf is related to the residence
time byτres) Nτf/2. (2) Mixing is achieved at intervalsτm by
randomly picking a pair of cells and averaging (“coalescing and
redispersing”) their concentrations. For any cell to undergo a
mixing event, it takes on averageτmix) Nτm/2 time units, the
characteristic mixing time of the reactor. (3) Between the
periodic feeding and mixing events, the contents of each of the
N cells evolves according to the rate law (1), which is integrated
numerically.
The value ofN was N ) 2598. The resulting 2N rate

equations were integrated on an SGI workstation using an
implicit Euler scheme.31 One oscillation period required of the
order of 1 h CPU time.
The dynamical state of the reactor is described by the 2N

concentrations of species at timet. From this, a coarse-grained
probability densityP(cj1, cj2; t) is constructed by sorting the cells
into appropriately chosen concentration bins and equating the
fraction of cells in the bin with central coordinates (cj1, cj2) to
P(cj1, cj2; t). Typically, a 100× 100 grid of bins was used.
These 3-D probability histograms are plotted in Figure 2a-c.
An alternative scatter-plot representation of the same data is
given in Figure 2d-f.

B. The Flow-Oregonator

The minimal kinetic model of the BZ system in a CSTR was
obtained from the higher dimensional batch-Oregonator33 by
eliminating the rapidly varying reaction intermediates and
retaining only those input species that are not bath species as
dynamical variables,34 and by adding the corresponding flow
terms.32 The resulting two-variable flow-Oregonator is

wherex ≡ [HBrO2], y ≡ [Br-], z≡ [Ce(IV)], h ≡ [H+], a ≡
[BrO3

-], b≡ [MA]. The stoichiometric parameterf determines
production of Br-. The value ofx is given by the equation of
state, obtained by adiabatic elimination:

The rate constants and parameter values, for which the
simulations in Figures 1b,c, 2, 3, and 4 were done, arek1 ) 2.0
M-3 s-1, k2 ) 2.0× 108 M-2 s-1, k3 ) 2.0× 103 M-2 s-1, k4
) 4.0× 108 M-1 s-1, k5 ) 1.0 M-1 s-1, k0 ) 0.076 982 3,f )
0.6,h ) 1.0 M, b ) 20.0 M, y0 )1 × 10-5 M, andz0 ) 1 ×

10-5 M. The dimensioned model (2) may be directly related
to experiments.
Figure 1a shows a limit cycle in the phase plane for the above

parameter values. This limit cycle is nonuniform; that is, the
rate of flow in phase space varies greatly, since the system
spends most of the time in the “slow phase” near its unstable
fixed point at low values ofz and passes rapidly through its
“fast phase” at high values ofz. The corresponding time series
z(t) is Figure 1b. Most of the stochastic simulations were
performed at this parameter value for computational convenience
to prevent the limit cycle from being excessively stiff. Quali-
tatively similar results are also found elsewhere within the
oscillatory domain. To illustrate the effect of stirring on the
oscillation attributes, the calculations summarized in Figure 5
were done at the parameter valuek0 ) 0.1 andf ) 0.5, all others
being the same as above.

C. Results and Discussion

Time-Dependent Probability Distribution. The probability
distributionP(y,z;t) completely describes the state of the system
as a function of time. Its first moments are the mean
concentrations, and the second moments are the variances,
related to the mean fluctuation amplitudes. First, we show how
the probability distribution evolves along a typical cycle as a
function of time. We express time in terms of the phaseφ,
defined byφ ) t/T, whereT is the oscillation period. Figure
2a,b,c illustrates the evolution ofP(y,z;t) through three snapshots
during the slow, fast, and decelerating phases, respectively. To
appreciate the pronounced phase-dependence or “breathing
motion” of the probability distribution, the different scales of
the panels should be noted. During the slow phase, the
probability distribution is sharply localized. As the system
passes through its fast phase, it broadens dramatically. This
means that the reactor is relatively homogeneous during the slow
phase and that it becomes very inhomogeneous during its fast
phase. An alternative representation is given by the scatter plots
Figure 2d,e,f. The solid line in the scatter plots represents the
mean concentration during a cycle. To quantify the degree of
inhomogeneity of the reactor, we use here the mean deviation
from the average

dci/dt ) f(ci) (1)

dy/dt ) -k1h
2ay- k2hxy+ k5bfz+ k0(y0 - y)

dz/dt ) 2k3hax- k5bz+ k0(z0 - z) (2)

x) 1
4k4

{-2k2hy+ k3ha- k0 +

x(k3ha- k2hy - k0)
2 + 8k1k4h

2ay} (3)

Figure 1. (a) One typical cycle in the phase plane. The open dot inside
the cycle indicates the (unstable) fixed point. The solid dot on the cycle
marks the reference phaseφ ) 0. Labels s, f, d indicate the slow, fast,
and decelerating phases. (b) Time series corresponding to part a.

δN )
1

N
∑
i)1

N x(yi - 〈y〉)2 + (zi - 〈z〉)2 (4)
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This may also be viewed as a measure of the fluctuation
amplitude, although more appropriate definitions may be
adopted, depending on the nature of the detector (e.g. light
absorption or electrochemical response to a specific ion). This
issue is not pursued here. How can physical experiments
provide a measure of the reactor inhomogeneity? If it were
possible to monitor a variable on a sufficiently fine spatial scale,
corresponding to a single cell, one would obtain a time series
whose fluctuations accurately reflect the probability distribution
in one direction. In reality, detection usually introduces some
spatial and temporal averaging, and the magnitude of the
resulting fluctuations is correspondingly reduced. This is
illustrated by Figure 3a,b. Panel b represents the noisy
“microelectrode” signal〈z(φ)〉10 by the average over 10 ran-
domly chosen cells. The fluctuations are most pronounced at
the peak of the signal (cf. Figure 1b) where the probability
distribution (Figure 2b,e) has reached its maximum spread. The
local fluctuation amplitude is also a measure of the width of
the probability distribution. Panel a represents a “macroelec-
trode” signal given by the ensemble average〈z(φ)〉N over the
entire reactor: fluctuations are drastically reduced. Thus, by
monitoring the system on a small spatial scale8,9,20and analyzing
the local fluctuation amplitude, one may obtain a measure of
the width of the probability distribution.
Figure 3c illustrates the pronounced phase-dependence of the

fluctuations. It demonstrates that the system’s response to
constant input noise is an equally pronounced function of
oscillation phase. To interpret this observation, recall23,24,28,35

that the response of an oscillator to perturbations of its dynamical
variables is related to its “local stability”, i.e. to the local rate
of decay or growth of the perturbation to or from the limit cycle.
It is known23,24that globally stable limit cycles generally possess
locally unstable phases during which perturbations from the
cycle grow, before they ultimately decay. Furthermore, regions

in phase space may exist where volumes expand locally,24 before
they contract eventually, as is required for dissipative systems.
The rate of change of volume elements in phase space is given
by the divergence div(f) of the flow (equal to the trace of the
linear stability matrix) of the dynamical system (1). A negative
divergence corresponds to contraction (dissipation), and a
positive divergence to expansion. To show that the dramatic

Figure 2. Calculated probability distribution,P(y,z;t) for three phases (a, b, c) on the cycle. Parameters areN ) 2598,τmix ) 0.012 99,τres )
0.076 98 (corresponding tok0 in Figure 1b). (d, e, f) Same data as a, b, c represented as scatter plots. One average cycle is shown by the orbits.

Figure 3. Responses of (a) “macroelectrode” signal,〈z〉N and (b)
“microelectrode” signal,〈z〉10. The comparison between (c) the degree
of inhomogeneity or fluctuation amplitudeδ(φ) and (d) the divergence
of the flow div(f) evaluated along the stochastic limit cycle illustrates
the role of local stability in the evolution of fluctuations.
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expansion of the ensemble of phase points early in the rapid
phase in Figure 2 is associated with a positive value of the
divergence, we compare the computed fluctuation amplitude,
Figure 3c, with the divergence of the flow, Figure 3d, of the
deterministic model (2). The similarity of the two plots shows
that the local instability of the cycle plays a major role in the
evolution of fluctuations and of the probability distribution.
Stirring Effects. It is intuitively clear that the reactor

becomes more inhomogeneous as mixing is slowed down.
Figure 4a,b,c illustrates this broadening of the probability
distribution with decreasing the mixing rate at the same, fast
phase. The widthδ(φ) of the distribution is most sensitive to
stirring during its most diffuse, rapid phase (Figure 4d,e,f).
Indeed, all stirring effects that were surveyed in the Introduction
may be viewed in the light of such changes of the probability
distribution.
The evolution of the probability distribution may be divided

into two conceptual stages: first comes the nonreactive turbulent
mixing that gives rise to turbulent eddies.13,14 This is followed
by the chemical transformation of the turbulent eddies. To make
this conceptual picture explicit, we have calculated in Figure
4g,h,i the probability distribution corresponding to nonreactive
mixing. Mass conservation constrains the unreactive cells to
the straight line connecting the feed concentrations. The width
δ(t) of these one-dimensional distributions, given by the thin
horizontal lines at the bottom of Figure 4d,e,f, increases slightly
with τmix. The essential point to be noted is that despite the

very different appearances of the reactive and nonreactive
distributions during the slow phase of the reaction, the corre-
sponding widthsδ are very close to each other. This suggests
that mixing, rather than chemical relaxation, determines the
width of the probability distribution when reaction is slow.
Chemical reaction plays a key role in the growth and decay of
fluctuations only when its time scale is on the order of or shorter
than the mixing time. This is the case during the fast,
autocatalytic phase of the cycle: mixing can then no longer
keep up with chemical relaxation and the reactor inhomogeneity
becomes large.
Next we address in Figure 5 the experimentally well-known

deviation of limit cycle oscillations from perfect periodicity.8,36,37

Time series and phase plane plots are given for slow mixing in
Figure 5a,b and for rapid mixing in Figure 5c,d. Obviously,
the probability density and the averages derived from it are
fluctuating quantities. The irregular amplitude at the slow
mixing rate and the jittery cycle in the phase plane are a
consequence of the broad probability distribution during the fast
oscillation phase. As the distribution narrows at the higher
mixing rate, the irregularity of the amplitude decreases. The
period fluctuates also, but to a lesser degree than the amplitude.
Most prominent in Figure 5 is the effect of mixing on the

average oscillation attributes. As the mixing rate is reduced,
the limit cycle shrinks and the period decreases.τmix indicates
the presence of a supercritical Hopf bifurcation. However the
amplitude does not vanish completely since the inhomogeneities

Figure 4. (a, b, c) Effect of mixing on the probability distribution at the same, fast phase. (a)τmix) 0.008 12, (b)τmix ) 0.010 83, (c)τmix )
0.016 24. (d, e, f) Bell-shaped curves showing the corresponding average absolute deviationsδ(φ) of the probability distributions over one cycle.
(g, h, i) Nonreactive probability distributions for the same parameter values as in a, b, c. The intercepts on the axes are the feed concentrationsy0,
z0.
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maintain the system in a state of noise-induced, low-amplitude
oscillations long after the passage of the Hopf point.38 The
precise location of the Hopf point might be obtained through
an additional analysis.38 The average oscillation periodT
(Figure 5e) decreases over the same range of mixing rates and
finally levels out, while its variance suddenly increases sharply,
signaling the region of bifurcation and the noise-induced state
beyond it. Experiments in the batch-BZ system9,39,40 and in
the chlorite-iodide system in a CSTR8,10 have shown similar
trends of decreased amplitude and period at reduced stirring
rates. This was explained9,41 by the help that external noise
provides in skipping over the slow portion of the cycle when
the system spends a long time in one part of the cycle (e.g.
Figure 1b). However, this trend is not generic, and the opposite
stirring effectsa slowing-down of oscillations at decreased
stirringshas been reported occasionally.37,42,43

D. Conclusion

The key result of this paper is the statistical description of
limit cycle oscillations in a CSTR that is provided by the
explicitly calculated time-dependent probability distribution.
Formally related are the stationary and time-dependent solutions
of the multivariate master equation44,45 that describes the
dynamics of internal fluctuations. While internal fluctuations
are important in systems with low levels of external noise,
extrinsic noise often dominates. The CSTR is such a system
in which the external noise source is well understood, intense,
and readily detectable. The present results illustrate the close
relationship that exists between the moments of the probability
distribution, the fluctuation amplitude, and the local stability
properties of limit cycles. They provide a guide for extracting
information on the local stability of the cycle from suitably
recorded experimental time series.

The well-known irregularities of limit cycle oscillations may
be readily understood in light of the probability distribution
function. The dependence of the probability distribution on
mixing rate provides some insight into the stirring effects,
although further work is required to fully understand the
connection between inhomogeneity and the oscillation attributes.
The technique described and applied here to limit cycle
oscillations has been used to provide more quantitative informa-
tion on the stirring effects on steady states and bistability limits.46

A theoretical interpretation, based on stochastic differential
equations, has been developed.38

The two-variable flow-Oregonator was used here for com-
putational convenience. However, the use of reduced kinetic
models to describe stirring effects may not be quite appropriate
since the fastest steps, whose reactants are often adiabatically
eliminated, will be the first to compete effectively with the
mixing process and give rise to the kind of stirring effects that
we address in this paper. In other words, in reactions with fast
steps (e.g. autocatalytic explosion), incomplete mixing may
effectively “awaken” the hidden degrees of freedom. Evidence
for such an effect occurs in the minimal bromate oscillator,6

where stirring affects the bistability hysteresis in a qualitatively
different way from the classical Belousov-Zhabotinsky reac-
tion.47 We have argued47 that this difference in stirring effects
reflects the difference of the number of effective degrees of
freedom in both systems. This issue goes however beyond the
present paper and requires further work.
As used here, the CM model does not contain any spatial

information and disregards the anisotropy of the CSTR.15 The
anisotropy of the turbulent reactive flow is related to macro-
scopic concentration gradients48 in the CSTR. However, the
CM model may be adapted to describe such spatial effects by
attaching spatial meaning and a varying mixing intensity to the
cell indices.
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